4 research outputs found

    Secretome of endothelial progenitor cells from stroke patients promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage

    Get PDF
    Enfermedad cardiovascular; Terapia celular; SecretomaMalaltia cardiovascular; Teràpia cel·lular; SecretomaCardiovascular disease; Cell therapy; SecretomeBackground Cell-based therapeutic strategies have been proposed as an alternative for brain repair after stroke, but their clinical application has been hampered by potential adverse effects in the long term. The present study was designed to test the effect of the secretome of endothelial progenitor cells (EPCs) from stroke patients (scCM) on in vitro human models of angiogenesis and vascular barrier. Methods Two different scCM batches were analysed by mass spectrometry and a proteome profiler. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used for designing angiogenesis studies (proliferation, migration, and tubulogenesis) or in vitro models of EC monolayer (confluent monolayer ECs—CMECs) and blood–brain barrier (BBB; brain-like ECs—BLECs). Cells were treated with scCM (5 μg/mL) or protein-free endothelial basal medium (scEBM—control). CMECs or BLECs were exposed (6 h) to oxygen–glucose deprivation (OGD) conditions (1% oxygen and glucose-free medium) or normoxia (control—5% oxygen, 1 g/L of glucose) and treated with scCM or scEBM during reoxygenation (24 h). Results The analysis of different scCM batches showed a good reproducibility in terms of protein yield and composition. scCM increased CD34+-EC proliferation, tubulogenesis, and migration compared to the control (scEBM). The proteomic analysis of scCM revealed the presence of growth factors and molecules modulating cell metabolism and inflammatory pathways. Further, scCM decreased the permeability of CMECs and upregulated the expression of the junctional proteins such as occludin, VE-cadherin, and ZO-1. Such effects were possibly mediated through the activation of the interferon pathway and a moderate downregulation of Wnt signalling. Furthermore, OGD increased the permeability of both CMECs and BLECs, while scCM prevented the OGD-induced vascular leakage in both models. These effects were possibly mediated through the upregulation of junctional proteins and the regulation of MAPK/VEGFR2 activity. Conclusion Our results suggest that scCM promotes angiogenesis and the maturation of newly formed vessels while restoring the BBB function in ischemic conditions. In conclusion, our results highlight the possibility of using EPC-secretome as a therapeutic alternative to promote brain angiogenesis and protect from ischemia-induced vascular leakage.This work has been supported under the Euronanomed 8th Joint Call-MAGGBRIS collaborative project by grants from the Spanish Ministry of Science and Innovation (PCIN-2017-090) the French national agency (ANR-ANR-17-ENM3-0005-01), the AC17/00004 grant from Instituto Carlos III (ISCIII) with FEDR funds, and the National Centre for Research and Development (NCBR 15/EuronanoMed/2018). A part of this study has been also funded in the frame of the NANOSTEM project, a Marie Skłodowska-Curie Innovative Training Network (ITN) by receiving grant from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 764958 and the Expression of Interest (EoI) for Collaborative Projects on Regenerative Medicine 2019 P-CMR[C]), and the programs 2017-SGR-1427 and 2017-SGR-765 from the Generalitat de Cataluny. Alba Grayston is supported by the fellowship FI17/00073 from ISCIII with FEDR funds. Miguel Garcia-Gabilondo is supported by the PERIS grant SLT017/20/000197 from Generalitat de Cataluny. The mass spectrometer of the Spectrométrie de Masse de l’Artois (SMART) facilities used in this study was funded by the European Regional Development Fund (ERDF), the Hauts-de-France regional council, and the Université d’Artois (France)

    Nanotargeted endothelial progenitor cells-secretome therapy through endovascular delivery for ischaemic stroke

    Get PDF
    L'ictus isquèmic segueix sent a dia d'avui una de les principals causes de mortalitat i discapacitat a nivell mundial. Així doncs, és essencial desenvolupar estratègies terapèutiques més enllà de la recanalització aguda. Tanmateix, la cerca de noves teràpies es veu limitada per l'elevada complexitat dels processos fisiopatològics derivats de l'ictus i pel repte que suposa l'arribada d'agents terapèutics al cervell. En aquest sentit, l'ús dels factors secretats per cèl·lules progenitores endotelials (secretoma d'EPCs) representa una estratègia prometedora per promoure la reparació neurovascular la qual estalviaria els riscos associats a les teràpies cel·lulars. Paral·lelament, la trombectomia mecànica per a la recanalització aguda després de l'ictus ha obert una nova possibilitat per administrar fàrmacs directament al cervell, i aquest abordatge podria millorar significativament gràcies a la nanomedicina. L'objectiu d'aquesta tesi doctoral ha estat augmentar l'arribada de fàrmacs al cervell per promoure la reparació neurovascular després de l'ictus isquèmic mitjançant l'administració intraarterial i el direccionament magnètic del secretoma d'EPCs en nanocàpsules polimèriques biocompatibles i biodegradables. Les nanocàpsules emprades per a aquest estudi han estat modificades per incorporar nanopartícules de ferro superparamagnètiques (SPIONs) i marcatges fluorescents per al seu direccionament magnètic i monitoratge mitjançant les tècniques d'imatge per ressonància magnètica i per fluorescència molecular, respectivament. L'estudi exhaustiu de la biodistribució d'aquestes nanocàpsules per mitjà de les tècniques esmentades ha demostrat, en un model d'ictus isquèmic en ratolins, que la ruta intraarterial en combinació amb el direccionament magnètic presenta un gran avantatge per augmentar de forma segura l'arribada al cervell. A més, s'ha observat l'acumulació de nanocàpsules a la regió cerebral infartada fins a una setmana després de l'administració, fet que afavoriria l'alliberament sostingut dels factors terapèutics encapsulats. Per altra banda, aquest treball ha demostrat, a través de l'estudi tant del contingut proteic total com de factors específics, la possibilitat d'encapsular aquest secretoma i preservar la seva funció pro-angiogènica un cop alliberat, tal com s'ha demostrat en models in vitro de cèl·lules endotelials. El present estudi demostra l'avantatge terapèutic de la implementació d'aquest abordatge nano-dirigit per a l'administració del secretoma d'EPCs, enfront de la teràpia lliure. Els resultats que es mostren aquí suggereixen que l'administració endovascular hiperaguda del secretoma d'EPCs, a la dosi testada, podria exacerbar el dany cerebral post-isquèmic, juntament amb una resposta neuro-inflamatòria incrementada i, per altra banda, promouria la formació de nous vasos sanguinis de manera ubiqua. En canvi, el tractament equivalent nano-dirigit permetria l'angiogènesi selectiva al teixit subjacent a l'infart sense els efectes nocius observats amb el tractament lliure. Com a pas previ cap a la translació de l'abordatge terapèutic proposat, s'han utilitzat porcs com a models d'animals grans amb cervells girencèfals (propers a l'humà) així com un model ex vivo de l'arbre vascular humà. Per una banda, s'ha pogut comprovar la seguretat de l'administració endovascular i la seva eficàcia per al nano-direccionament al cervell en porcs. Finalment, el direccionament de nanocàpsules administrades per via intraarterial i retenció amb camp magnètic també ha estat demostrat per l'ús en humans, en un model que simula l'anatomia i biodinàmica humanes. En conjunt, els resultats obtinguts en aquesta tesi doctoral posicionen l'ús de nanocàpsules magnètiques per via intraarterial com una estratègia prometedora per augmentar l'arribada de fàrmacs de forma específica al cervell, com per exemple el secretoma d'EPCs. Aquesta estratègia es podria implementar en el context clínic actual, amb l'ús de la trombectomia mecànica.El ictus isquémico sigue siendo a día de hoy una de las principales causas de mortalidad y discapacidad a nivel mundial. Por ello, es esencial desarrollar estrategias terapéuticas más allá de la recanalización aguda. Sin embargo, la búsqueda de nuevas terapias se ve dificultada por la gran complejidad de los procesos fisiopatológicos derivados del ictus, y por el reto que supone la llegada de factores terapéuticos al cerebro. En este sentido, el uso de factores secretados por células progenitoras endoteliales (secretoma de EPCs) representa una estrategia prometedora para promover la reparación neurovascular, la cual evitaría los riesgos asociados a las terapias celulares. Por otro lado, la trombectomía mecánica para la recanalización aguda tras el ictus ha abierto una nueva posibilidad para administrar fármacos directamente al cerebro, y este abordaje podría mejorar significativamente gracias a la nanomedicina. El objetivo de la presente tesis doctoral consiste en aumentar la llegada de fármacos al cerebro con tal de promover la reparación neurovascular tras el ictus isquémico, mediante la administración intraarterial y la retención magnética del secretoma de EPCs en nanocápsulas poliméricas biocompatibles y biodegradables. Las nanocápsulas diseñadas para este estudio han sido modificadas con la incorporación de nanopartículas de hierro superparamagnéticas (SPIONs) y marcajes fluorescentes para su retención magnética y monitorización mediante el uso de las técnicas de imagen por resonancia magnética y por fluorescencia molecular, respectivamente. El estudio exhaustivo de la biodistribución de dichas nanocápsulas, mediante las técnicas mencionadas ha demostrado, en un modelo de ictus isquémico en ratones, que la ruta intraarterial en combinación con el direccionamiento magnético presenta una gran ventaja para aumentar de forma segura la llegada al cerebro. Además, se ha observado la acumulación de nanocápsulas en la región cerebral infartada hasta una semana tras la administración, lo que favorecería la liberación sostenida de los factores terapéuticos encapsulados. Por otro lado, este trabajo ha demostrado, mediante el estudio tanto del contenido proteico total como de factores específicos, la posibilidad de encapsular este secretoma y preservar su función pro-angiogénica una vez liberado, tal y como se ha demostrado en modelos in vitro de células endoteliales. Este estudio demuestra la ventaja terapéutica de la implementación de este abordaje nano-dirigido para la administración del secretoma de EPCs frente a la terapia libre. Los resultados que se muestran aquí sugieren que la administración endovascular hiperaguda del secretoma de EPCs, a la dosis testada, podría exacerbar el daño cerebral post-isquémico, junto a una respuesta neuro-inflamatoria incrementada y, por otro lado, promovería la formación de nuevos vasos sanguíneos de forma ubicua. Por lo contrario, el tratamiento equivalente nano-dirigido permitiría la angiogénesis selectiva en el tejido subyacente al infarto en ausencia de los efectos nocivos observados con el tratamiento libre. Como paso previo hacia la traslación del abordaje terapéutico propuesto, se han utilizado cerdos como modelos de animales grandes con cerebros girencéfalos (cercanos al humano), así como un modelo ex vivo del árbol vascular humano. Por un lado, se ha podido comprobar la seguridad de la administración endovascular y su eficacia para el nano-direccionamiento al cerebro en cerdos. Finalmente, el direccionamiento magnético de nanocápsulas administradas por vía intraarterial ha sido demostrado para el uso en humanos, en un modelo que simula la anatomía y la biodinámica humanas. En conjunto, los resultados obtenidos en esta tesis doctoral posicionan el uso de nanocápsulas magnéticas por vía intraarterial como una estrategia prometedora para incrementar la llegada de fármacos de forma específica al cerebro, como por ejemplo el secretoma de EPCs. Dicha estrategia se podría implementar en el contexto clínico actual con el uso de la trombectomía mecánica.Stroke remains a leading cause of death and disability worldwide. Hence there is an urgent need to develop therapeutic strategies beyond acute recanalisation. However, this therapeutic development is hampered by a highly complex pathophysiology, added to the challenge of brain drug delivery. In this regard, endothelial progenitor cells (EPCs)-secretome represents a promising cell-free therapy for post-stroke neurovascular repair. Furthermore, mechanical thrombectomy for recanalisation has opened the window to brain drug delivery, which could be further improved by nanomedicine. This doctoral thesis aimed to enhance brain targeting and neurovascular repair in the context of cerebral ischaemia, through the endovascular delivery and magnetic retention of EPCs-secretome encapsulated in biocompatible and biodegradable polymeric nanocarriers. The proposed nanocarriers have been functionalised with superparamagnetic iron-oxide nanoparticles (SPIONs) and fluorescent tags for magnetic retention and magnetic resonance/fluorescent molecular imaging (MRI/FMI), respectively. An exhaustive study of their biodistribution by MRI/FMI has shown a great advantage of the intraarterial route combined with magnetic retention through focused magnet devices, to safely enhance brain targeting in a mouse model of cerebral ischaemia. And, importantly, it has been demonstrated that the nanocarriers remain in the target ischaemic brain up to one week, easing the sought-after sustained release of cargo therapeutic factors. Furthermore, the EPCs-secretome has been successfully encapsulated into the polymeric nanocarriers, as seen through both total and specific EPCs-secretome cargo proteins, and the pro-angiogenic therapeutic effects were preserved after the encapsulation-release process, as demonstrated in endothelial cell culture in vitro models. The present study demonstrates the advantage of the therapeutic application of EPCs-secretome through this selective nanotargeted approach against the equivalent free treatment at similar doses. The results presented herein suggest that hyperacute endovascular delivery of free EPCs-secretome, at the tested dose, might exacerbate the acute post-ischaemic brain damage along with an increased neuro-inflammatory response, while ubiquitously enhancing brain angiogenesis. In contrast, the nanotargeted treatment could selectively enhance brain angiogenesis in the target peri-infarct brain, in the absence of the aforementioned detrimental effects. As preliminary steps towards the translation of the proposed therapeutic approach to the clinical setting, large animals with gyrencephalic brains and an ex vivo humanised vascular model were also used. The present study demonstrates the safety and feasibility of endovascular delivery for brain nanotargeting in pigs, and the efficacy of endovascular delivery and magnetic retention in an ex vivo model adapted to the human vascular anatomy and biodynamics. In summary, this doctoral thesis places the use of polymeric magnetised nanocarriers through endovascular delivery as a promising approach to enhance specific brain targeting of multiple therapeutic agents, such as EPCs-secretome, which could be implemented in the context of mechanical thrombectomies in the clinical scenario

    Bioevaluation of magnetic mesoporous silica rods: cytotoxicity, cell uptake and biodistribution in zebrafish and rodents

    No full text
    Cytotoxicity; BioevaluationCitotoxicidad; BioevaluaciónCitotoxicitat; BioavaluacióMesoporous silica nanoparticles (MSN) characterized by large surface area, pore volume, tunable chemistry, and biocompatibility have been widely studied in nanomedicine as imaging and therapeutic carriers. Most of these studies focused on spherical particles. In contrast, mesoporous silica rods (MSR) that are more challenging to prepare have been less investigated in terms of toxicity, cellular uptake, or biodistribution. Interestingly, previous studies showed that silica rods penetrate fibrous tissues or mucus layers more efficiently than their spherical counterparts. Recently, we reported the synthesis of MSR with distinct aspect ratios and validated their use in multiple imaging modalities by loading the pores with maghemite nanocrystals and functionalizing the silica surface with green and red fluorophores. Herein, based on an initial hypothesis of high liver accumulation of the MSR and a future vision that they could be used for early diagnosis or therapy in fibrotic liver diseases; the cytotoxicity and cellular uptake of MSR were assessed in zebrafish liver (ZFL) cells and the in vivo safety and biodistribution was investigated via fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI) employing zebrafish larvae and rodents. The selection of these animal models was prompted by the well-established fatty diet protocols inducing fibrotic liver in zebrafish or rodents that serve to investigate highly prevalent liver conditions such as non-alcoholic fatty liver disease (NAFLD). Our study demonstrated that magnetic MSR do not cause cytotoxicity in ZFL cells regardless of the rods' length and surface charge (for concentrations up to 50 μg ml-1, 6 h) and that MSR are taken up by the ZFL cells in large amounts despite their length of ∼1 μm. In zebrafish larvae, it was observed that they could be safely exposed to high MSR concentrations (up to 1 mg ml-1 for 96 h) and that the rods pass through the liver without causing toxicity. The high accumulation of MSR in rodents' livers at short post-injection times (20% of the administered dose) was confirmed by both FMI and MRI, highlighting the utility of the MSR for liver imaging by both techniques. Our results could open new avenues for the use of rod-shaped silica particles in the diagnosis of pathological liver conditions.The authors acknowledge financial support from the Spanish Ministry of Science and Innovation through the PID2021-122645OB-100 project, the ‘Severo Ochoa’ Programme for Centers of Excellence in R&D (CEX2019-000917-S). The Generalitat de Catalunya, projects 2017SGR765 and 2017SGR1427, are also acknowledged. The authors participate in the Aerogels COST ACTION (CA 18125). J. G. has received financial support through the “la Caixa” INPhINIT Fellowship Grant for Doctoral Studies at Spanish Research Centers of Excellence (grant code: LCF/BQ/DI17/11620041), “la Caixa” Banking Foundation (ID100010434), Barcelona, Spain. J. G. was enrolled in the doctoral program in Materials Science at the UAB. M. T. (ref. RYC2019-026841-I) has a post-doctoral fellowship “Ramón y Cajal” supported by the “Ministerio de Ciencia e Innovación”, Spanish Government. A. G. has been supported by the fellowship from Instituto de Salud Carlos III with FEDER funds (FI17/00073). A. Rosell takes part of the RICORS-STROKE network from Instituto de Salud Carlos III with FEDER funds (RD21/0006/0007). This research work was performed in the framework of the Nanomedicine CSIC HUB (ref. 202180E048). Dr Daniel Padro is acknowledged for the supervision of MRI in vivo experiments in ReDIB-Molecular and Functional Imaging Facility at CIC BiomaGUNE which were accessible through the Spanish network of Singular Scientific and Technical Infrastructure (ICTS). Authors thanks Dr Fernando Herranz (IQM-CSIC) for fruitful discussions

    Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders

    Get PDF
    N-sulfoglucosamina sulfohidrolasa; Teràpia de reemplaçament enzimàtic; Trastorns d’emmagatzematge lisosomalN‐sulfoglucosamina sulfohidrolasa; Terapia de reemplazo enzimático; Trastornos de almacenamiento lisosomalN‐sulfoglucosamine sulfohydrolase; Enzyme replacement therapy; Lysosomal storage disordersIn the present study the use of extracellular vesicles (EVs) as vehicles for therapeutic enzymes in lysosomal storage disorders was explored. EVs were isolated from mammalian cells overexpressing alpha-galactosidase A (GLA) or N-sulfoglucosamine sulfohydrolase (SGSH) enzymes, defective in Fabry and Sanfilippo A diseases, respectively. Direct purification of EVs from cell supernatants was found to be a simple and efficient method to obtain highly active GLA and SGSH proteins, even after EV lyophilization. Likewise, EVs carrying GLA (EV-GLA) were rapidly uptaken and reached the lysosomes in cellular models of Fabry disease, restoring lysosomal functionality much more efficiently than the recombinant enzyme in clinical use. In vivo, EVs were well tolerated and distributed among all main organs, including the brain. DiR-labelled EVs were localized in brain parenchyma 1 h after intra-arterial (internal carotid artery) or intravenous (tail vein) administrations. Moreover, a single intravenous administration of EV-GLA was able to reduce globotriaosylceramide (Gb3) substrate levels in clinically relevant tissues, such kidneys and brain. Overall, our results demonstrate that EVs from cells overexpressing lysosomal enzymes act as natural protein delivery systems, improving the activity and the efficacy of the recombinant proteins and facilitating their access to organs neglected by conventional enzyme replacement therapies.This study has been supported by ISCIII (PI18_00871 co-founded by Fondo Europeo de Desarrollo Regional (FEDER)), and CIBER-BBN (EXPLORE) granted to IA. Different CIBER-BBN units of ICTS ‘NANBIOSIS’ have participated in this work (https://www.nanbiosis.es/platform-units/), more specifically the U1/Protein Production Platform for protein purification, Unit 6 for NTA analysis and TFF purification and U20/FVPR for in vivo assays
    corecore